星云棋牌官网下载

    <dir id='lqd4b'><del id='lqd4b'><del id='lqd4b'></del><pre id='lqd4b'><pre id='lqd4b'><option id='lqd4b'><address id='lqd4b'></address><bdo id='lqd4b'><tr id='lqd4b'><acronym id='lqd4b'><pre id='lqd4b'></pre></acronym><div id='lqd4b'></div></tr></bdo></option></pre><small id='lqd4b'><address id='lqd4b'><u id='lqd4b'><legend id='lqd4b'><option id='lqd4b'><abbr id='lqd4b'></abbr><li id='lqd4b'><pre id='lqd4b'></pre></li></option></legend><select id='lqd4b'></select></u></address></small></pre></del><sup id='lqd4b'></sup><blockquote id='lqd4b'><dt id='lqd4b'></dt></blockquote><blockquote id='lqd4b'></blockquote></dir><tt id='lqd4b'></tt><u id='lqd4b'><tt id='lqd4b'><form id='lqd4b'></form></tt><td id='lqd4b'><dt id='lqd4b'></dt></td></u>
  1. <code id='lqd4b'><i id='lqd4b'><q id='lqd4b'><legend id='lqd4b'><pre id='lqd4b'><style id='lqd4b'><acronym id='lqd4b'><i id='lqd4b'><form id='lqd4b'><option id='lqd4b'><center id='lqd4b'></center></option></form></i></acronym></style><tt id='lqd4b'></tt></pre></legend></q></i></code><center id='lqd4b'></center>

      <dd id='lqd4b'></dd>

        <style id='lqd4b'></style><sub id='lqd4b'><dfn id='lqd4b'><abbr id='lqd4b'><big id='lqd4b'><bdo id='lqd4b'></bdo></big></abbr></dfn></sub>
        <dir id='lqd4b'></dir>
      1. <small id='1u7ij'></small><noframes id='1u7ij'>

      2. <tfoot id='1u7ij'></tfoot>

          <legend id='1u7ij'><style id='1u7ij'><dir id='1u7ij'><q id='1u7ij'></q></dir></style></legend>
          <i id='1u7ij'><tr id='1u7ij'><dt id='1u7ij'><q id='1u7ij'><span id='1u7ij'><b id='1u7ij'><form id='1u7ij'><ins id='1u7ij'></ins><ul id='1u7ij'></ul><sub id='1u7ij'></sub></form><legend id='1u7ij'></legend><bdo id='1u7ij'><pre id='1u7ij'><center id='1u7ij'></center></pre></bdo></b><th id='1u7ij'></th></span></q></dt></tr></i><div id='1u7ij'><tfoot id='1u7ij'></tfoot><dl id='1u7ij'><fieldset id='1u7ij'></fieldset></dl></div>

              <bdo id='1u7ij'></bdo><ul id='1u7ij'></ul>

            1. <small id='e1ir7'></small><noframes id='e1ir7'>

            2. <tfoot id='e1ir7'></tfoot>

                <legend id='e1ir7'><style id='e1ir7'><dir id='e1ir7'><q id='e1ir7'></q></dir></style></legend>
                <i id='e1ir7'><tr id='e1ir7'><dt id='e1ir7'><q id='e1ir7'><span id='e1ir7'><b id='e1ir7'><form id='e1ir7'><ins id='e1ir7'></ins><ul id='e1ir7'></ul><sub id='e1ir7'></sub></form><legend id='e1ir7'></legend><bdo id='e1ir7'><pre id='e1ir7'><center id='e1ir7'></center></pre></bdo></b><th id='e1ir7'></th></span></q></dt></tr></i><div id='e1ir7'><tfoot id='e1ir7'></tfoot><dl id='e1ir7'><fieldset id='e1ir7'></fieldset></dl></div>

                    <bdo id='e1ir7'></bdo><ul id='e1ir7'></ul>

                  1. 学术堂首页 | 文献求助论文范文 | 论文题目 | 参考文献 | 开题报告 | 论文格式 | 摘要提纲 | 论文致谢 | 论文查重 | 论文答辩 | 论文发表 | 期刊杂志 | 论文写作 | 论文PPT
                    学术堂专业论文学习平台您当前的位置:学术堂 > 农学论文 > 畜牧兽医论文

                    奶牛个体识别最新研究成果综述

                    时间:2018-12-17 来源:中国农业大学学报 作者:孙雨坤,王玉洁,霍鹏举 本文字数:13321字

                      摘    要: 为了解个体识别在奶牛生产中记录产奶量、监控采食活动、监测卧床行为、追踪活动轨迹以及其他生产项目中的研究现状,以“奶牛”、“个体识别”、“识别方法”和“生产应用”为关键词,对2008—2018年的文献进行检索,并根据识别过程的不同特点对三类识别方法,即人工机械识别、接触式电子识别和图像生物识别进行归纳和总结并对识别方法、现代化生产应用以及国内进展等3个方面进行归纳和总结。结果表明:1)生物识别技术相较于传统方法对奶牛个体的伤害较小,可以在很多方面克服环境的干扰。2)目前智能识别技术与奶牛行为活动监测相关联,可以全面掌握个体健康状况和生产性能。3)国内在计算机视觉方面取得了长足的进步,为个体的智能化识别打下了坚实基础。今后个体识别技术研究应该着重于提高对环境的适应性和系统的兼容性,为建立完整的自动化奶牛监测体系提供依据。

                      关键词: 奶牛; 个体识别; 识别方法; 生产应用概况;

                      Abstract:星云棋牌官网下载 To evaluate the development of individual identification of dairy cows during production in recording milk yield,monitoring feeding activity,monitoring bed behavior,tracking activity track and other production projects,the literature related to methods and application of dairy cow identification 2008-2018 are retrieved by using “dairy cow”,“individual recognition”,“identification method” and “production application” as keywords.The results show that:1) Compared with traditional methods,biometrics identification could overcome environmental interference in many aspects to reduce harm to individual cows.2) Currently,intelligent identification technology associated with the monitoring of cow behavior could comprehensively monitor individual health status and production performance.3) China has made great progress in computer vision,which builds a solid foundation for intelligent identification of individuals.In the future,the research on individual identification technology should focus on improving the environmental adaptability and system compatibility to provide basis for the establishment of a complete automatic cow monitoring system.

                      Keyword: dairy cow; individual recognition; identification method; production application;

                      SUIZHEJIYUEHUAMUCHANGDEBUDUANZENGDUO,JINGZHUNCHUMUYEZHUJIANCHENGWEIMUCHANGGAOXIAOGUANLILINIAN,DASHUJUHUAGUANLIXITONGKEYIWEIJIYUEHUAMUCHANGTIGONGGUANJIANSHENGCHANZHISHUHEZAOQIYUJING[1]。GETISHIBIESHISHIXIANMUCHANGSHUZIHUAHEZHINENGHUAGUANLIDEJICHU,GAOXIAODEMUCHANGGUANLIXUYAOZHUNQUEZHANGWOQUNTIDEDONGTAIXINXI,FENXIMUCHANGGUANLISHUJUDEQIANTISHIZHUNQUESHOUJIXIANGGUANGETISHUJU。CHUANTONGMUCHANGDUINAINIUGETISHIBIEDEFANGSHIYIRENGONGGUANCEWEIZHU,SUIRANRENGSHIYONGYUCUNLANSHUJIAOXIAODEMUCHANG,DANDUIYUGUIMOJIAODADEMUCHANG,JIUHUICHANSHENGGONGZUOXIAOLVJIAODI、LAOLIQIANGDUGUODADEWENTI,BUSHIHEJIYUEHUAMUCHANGDEXUQIU[2]。CHURENGONGGUANCHAZHIWAI,DANGQIANYINGYONGJIAODUODEGETISHIBIEFANGFASHIWUXIANSHEPINJISHU(Radio frequency identification,RFID),GAIJISHUZHUYAOTONGGUODIANZIERBIAOYUGUDINGSHIHUOYIDONGSHIDEXINHAOSHOUFAQIDUQUNAINIUDEGETIBIANHAO,DUOYINGYONGYUJILUCHANNAIXINXIJIXUNZHAONAINIUDENGFANGMIAN。2012NIANLAI,SUIZHECHENGXIANGJISHUHEMOXINGXUNLIANLINGYUDEBUDUANFAZHAN,TUXIANGSHENGWUSHIBIEJISHUZAINONGYESHENGCHANZHONGDEYINGYONGYEBIANDEYUELAIYUEGUANGFAN,GAIJISHUZAINAINIUSHENGCHANZHONGJIANKANGPINGGU、FAQINGJIANKONG、XINGWEIHUODONGDENGDEDAOYINGYONG。JIYUTUXIANGSHENGWUSHIBIEJISHUDEZAIGETISHIBIEFANGMIANYOUZHEZHUNQUEXINGGAOHECHENGBENDILIANDETEDIAN。NAINIUGETISHIBIEKEWEIMUCHANGJILUCAISHIXINXI、CHANNAILIANG、XINGWEIHUODONGDENGTIGONGLEXIANGGUANSHUJUZHICHENG,BINGJIEHEJISUANJIXITONGJINXINGGUANLIYOUHUAYUJUECEBUSHU。

                      为了解奶牛个体识别在生产中的应用现状,本研究拟以“奶牛”、“个体识别”、“识别方法”和“生产应用”为关键词,对2008—2018年的研究论文进行检索,根据识别过程的不同特点对三类识别方法,即人工机械识别、接触式电子识别和图像生物识别进行归纳和总结,并简述了现代生产中智能化个体识别与其他生产因素的相互关联和管理应用,以期为我国智能化养殖提供参考依据。
                     

                    奶牛个体识别最新研究成果综述
                     

                      1 、个体识别方法

                      HUOQUDONGWUGETIBIANHAOSHIXUDUOGUANLIXITONGDEDIYIBU,MEIZHONGFANGFADOUYOUBUTONGDESHIYONGCHANGJING。ZHUNQUE、GAOXIAODESHIBIEDONGWUGETIXUYAOJUBEIYIYUCAOZUO、SHIXIAOXINGQIANG、TEZHENGTUCHU、YIJIWUHAICHULIDENGJIBENTEDIAN。ZAIJIANLISHIBIEXITONGSHIXUYAOKAOLVSHOUJIXINXIGUOCHENGDEKEKAOXING、GAOXIAOLVHEZHUNQUEXING,YIFANGZHIGETIXINXIDEDIUSHIYUCUOLU。GENJUQIBUTONGTEDIANHEGUANLIMUBIAO,SHIBIEFANGFAKEYIBEIFENWEISANLEI,JI:RENGONGJIXIE、JIECHUSHIDIANZISHIBIEHESHENGWUSHIBIE。

                      1.1、 人工机械识别

                    星云棋牌官网下载   GAIFANGFAXUYAOZAIDONGWUSHENTIZUOXIANGYINGBIAOJI,ZAIYOUSIYANGYUANGENJUBUTONGSHENGCHANXUYAOXUNZHAOTEDINGMUBIAO。YIZHONGBIAOJIFANGFASHIZAIDONGWUSHENTIZUOYONGJIUXINGBIAOJI,BAOKUOKEERHELUOYIN。KEERXUYAOJIANQUDONGWUERDUOBIANYUANBUFEN,TONGGUOERDUOSHANGXIAZUOYOUBUTONGWEIZHIDEQUEKOUQUEDINGFENZUHUOBIANHAO(TU1(a));HUOZHEJIANGBIANHAOWENYUNIUERNEICE[3]。LUOYINFAYONGDIANRETIEJIANGBIANHAOYINZAISHENTISHANG,HUOLENGDONGFALIYONGBUTONGSESUJIANGHAOMAZHIRUNAINIUCEMIANQUYU(TU1(b))。SUIRANYONGJIUBIAOJIFAKANSIJIANDANYIXING,DANJIANERHUORELUOYINDOUDUINAINIUCHANSHENGJUDADESHANGHAI,YOUQIZAOCHENGNAINIUDUISIYANGRENYUANCHANSHENGQIANZAIDEKONGJUXINLI,BULIYUSHENGCHANGUANLI。CIWAI,ERDUODEYANZHANXINGBUQIANG,KEYIBIAOJIDEDONGWUBIANHAOYOUXIAN,SUOYIBINGBUSHIHEDAGUIMOMUCHANG[4]。ERLENGDONGLUOYINHUISUIZHEDONGWUNIANLINGDEZENGDAHUOZHEMAOSEDEGAIBIAN,HAOMAHUIHAIYUANCHENGJINSINIUMAODEYANSE,NANYIBIANREN。

                    星云棋牌官网下载   ERBIAO(TU1(c))SHIYIZHONGJIAOWEICHANGJIANDEGETISHIBIEFANGFA,BUDANANZHUANGFANGBIANERQIEJIAGEDILIAN,ERQIENENGGOUJIANXIAODUIDONGWUDESHANGHAI,YIYUYANGZHIHUBIANREN,SHIBIECUOWULVDI[5]。ERBIAODECAIZHIDUOWEISULIAOHUOZHEJINSHU,ERBIAOBIAOMIANKEYIBIAOJIWEISHUZI、TIAOXINGMAHUOZHEBUTONGYANSE,YEKEYINEIZHIDIANZISHIBIEXINPIAN。DANSHIZAISHIJISHENGCHANZHONGJINGCHANGCUNZAIERBIAODIUSHI、SUNHUAIDEQINGKUANG,FosgateDENG[6]FAXIANYOUYUDIUSHIQINGKUANGSHICHANGFASHENG,BUSHIHEZHANGQISHIYONGERBIAO,YINCIZAIYIGEMUCHANGLIDESHUINIUPEIDAIERBIAO2NIANHOURENGKESHIBIEDEDONGWUJINYOU21%。LINGWAI,ERBIAODESHIYONGYEHUIGANRANYIXIEJIBING,YIXIANGYANJIUFAXIAN,ERBIAOYINQIDENAISHANYANGFABINGLVWEI3.3%,6.5%CUNZAIERZUZHISHOUSUNDEQINGKUANG。SHANGSHUFANGFADOUXUYAORENGONGSHIBIENAINIUBIANHAO,SUOYIJIADALELAODONGCHENGBEN,ZAIDAGUIMOMUCHANGZHONGXIANDEFEISHIFEILI。

                      图1 常见人工机械识别个体方法[3]
                    图1 常见人工机械识别个体方法[3]

                      Fig.1 Common individual recognition methods of artificial machines[3]

                      1.2、 接触式电子识别

                      SHEPINSHIBIEJISHUTONGGUOWUXIANDIANBOSHIBIEHUOZHUIZONGMUBIAO,GUANGFANYINGYONGZAIDONGWUSHIBIE、MENJINFANGWEN、TINGCHEFUWU、WULIANWANGGENZONGDENGLINGYU,GAIFANGFAZHUYAOYINGJIANZUCHENGBAOKUORFIDBIAOQIAN、YINGDAQIYIJIGUANLIZHUJIHUOZHEFUWUQI,GENJUSHIYONGHEJISHUBIAOZHUNKEYIFENWEIERBIAOSHI、ZHUSHESHIHEJIAONANGSHI[7]。ZAINAINIUCHANGZHONG,ERBIAOXINGSHIDERFIDBIAOQIANZUOWEIXINHAOYUANJIAOWEICHANGJIAN,CAOZUOPINLVKEFENWEIGAOPIN(13.56 MHz)HEDIPIN(125.0~134.5 kHz),GAOPIN(455 MHz,2.45 GHz,5.80 GHz)DUQUJULIZAI20~100 m,ERDIPIN(124 kHz~960 MHz)TIGONGDEDUQUFANWEIZAI0.3~3.0 m[8]。ZUIJINDEYANJIUSHIYONGCHAOKUANDAIXINHAO(Ultra-wide band,1GHz)SHIBIENAINIU,QICHUSHENEIDESHIBIEZHUNQUEXINGGAOYUGAOPINHECHAOGAOPINXINHAO,PortoDESHIYANZHONGCHAOKUANDAIXINHAOZAI0.110 mDEJULISHIBIELVWEI100%,ZAI0.515 mDESHIBIEZHUNQUELVWEI98%[9]。

                      XIANGJIAOYUQITACHUANTONGSHIBIEFANGSHI,RFIDBIAOQIANKEYIJILUDALIANGSHUJU,GENJUMEITOUDONGWUDEBUTONGBIANHAO,KEYIZHUIZONGCONGCHUSHENGDAOBEITUZAIDEQUANBUXINXI。RFIDKEYIPEIHEZHONGDUANFUWUQIZHUISUGETIDEMUCHANGXINXI、JIBINGQINGKUANGYIJISHENGCHANQINGKUANG,DASHUJUNENGGOUBANGZHUMUCHANGTIGAOXINXIDEKEKAOXINGHESHIYONGXING。RFIDDEGONGZUOYUANLIBINGBUYIKAOSHIJUESHIBIEGETI,YUCHUANTONGFANGSHIXIANGBIJIANGDILE0.1%~6.0%DESHIBIECUOWULV,CONGSHIBIEXIAOLVLAIKAN,LILUNSHANGXITONGMEIMIAOKEYIDUQU1 000CIBIAOQIANXINXI[7,10]。RANERRFIDYECUNZAIYIXIEANQUANYINHUAN,RFIDXITONGYOUBIAOQIAN、TONGXINDIANLU、YINGDAJI、WANGLUO、ZHONGDUANFUWUQIZUCHENG,RONGYIFASHENGBIAOQIANNEIRONGBEICUANGAI、XITONGNEIRONGXIANSHICUOWUHUOFUWUQISHOUDAOWANGLUOANQUANGONGJIDENGQINGKUANG[11,12]。TONGSHI,ZHENGTAOXITONGDECHENGBENJIAOGAO,SHICHANGZHONGGENJUBUTONGYINGYONGXUQIU,SHOUJIAZAIJIWANDAOSHIJIWANBUDENG。LINGWAI,GENJUSHIJIXIANCHANGDEFANKUI,RFIDHUISHOUDAOBUTONGDIANCIHUANJINGDEYINGXIANG,YINGYONGXIAOGUOCHABIEJUDA。BIAOQIANGONGLV、TIEZHIWEILAN、JIANGWENFENGSHAN、DIANLUZHILIANGDENGYINSUDOUHUIYINGXIANGYINGDAQIJIESHOUDIANCIBODEXIAOGUO,DAOZHIDUQUJULISUOXIAOJINERYINGXIANGSHUJUXINXIDECAIJI。

                    星云棋牌官网下载   LINGYIZHONGDIANZISHIBIEFANGSHISHIKECHUANDAISHIWUXIANCHUANGANQIJISHU,QIZHONGYINAINIUPEIDAIXIANGQUANHUOTUIHUANJIAOWEICHANGJIAN,ZAIZHEIXIEZHUANGBEIZHONGANZHUANGYOUCHUANGANQI,TONGGUOWUXIANWANGLUOCHUANZHIZHONGDUANFUWUQI。ZHEILEICHUANGANQIKEYIJIANCEDAODONGWUXINGWEIBIANHUA:CEDINGJIASUDU、JIAOSUDU、JUJIAOSHENGYINHUOYALI;CEDINGSHENEIHUANJINGBIANHUA;CEDINGWENDU、SHIDUHUOZHEQIYADENG。DUIYUGETISHIBIELAISHUO,YOUYUCHUANGANQIXUYAOWEIDANDUNAINIUJINXINGSHIPEI,SUOYIGETIYUSHUJUZHIJIANJUYOUPIPEIDEWEIYIXING,YINCIQIGETISHIBIELVWEI100%[9,13]。

                      1.3、 图像生物识别

                    星云棋牌官网下载   SHENGWUSHIBIEXUYAOTIQUDONGWUGETIXINGWEIHUOSHENGLITEZHENG,GENJUGETITEZHENGDEWEIYIXING,JIEHEJISUANJIYUGUANGXUE、SHENGXUE、SHENGWUCHUANGANQIHESHENGWUTONGJIXUEYUANLIJINXINGSHIBIEDONGWUGETIDEMIANBU、SHENGYIN、ZHIWENDENG。YUQITACHUANTONGFANGFAXIANGBI,GAIJISHUDETEDIANBUXUYAOWEIDONGWUPEIDAIDUOYUSHEBEIHUOBIAOJISHIBIEXINXI[14]。SHENGWUSHIBIEGUOCHENGBAOKUO:DUQUBIAOQIAN,CHUANRUFUWUQI,BIAOQIANCHULI,BIAOQIANFENLEI,PIPEIHECUNCHU。SHENGWUSHIBIEJISHUTIGAOLEGETISHIBIEDEANQUANXINGHEZIDONGHUASHIBIEDEZHUNQUEXINGHEWENDINGXING,JUYOUSHIYONGGUANGFAN(FUGAIGEXINGGEYE)、XINGNENGZHUOYUE(ZHUNQUE、GAOXIAOHELUBANGXINGQIANG)JICUOWULVDIDETEDIAN。MUQIANZHUYAODESHENGWUSHIBIEFANGSHISHILIYONGTUXIANGXINXIJISHUDUIMIANBU、BIJING、HEYANBUDENGTEZHENGBUWEIJINXINGJIEXI[15,16]。

                    星云棋牌官网下载   NAINIUBIJINGWENLUYOURURENTIZHIWENYIBAN,GETIZHIJIANJUYOUTESHUDEWENLIHETUQI,BUHUISUIZHESHIJIANTUIYIERFASHENGZHONGDAGAIBIAN,KEYIZUOWEISHIBIEGETISHENFENDEYOUXIAOTEZHENG。ZAOQIYOUYUTUXIANGXIANGSUJIAODI、SHUJUBUCHONGFEN、MOXINGPIPEIDUCHADENGYUANYIN,ZAI30TOUDONGWUZHONGYANZHENGQIQISHIBIEZHUNQUELVZHIYOU66.6%[17]。NoviyantoDENG[18]CAIJILE8TOUNAINIUDE120ZHANGBIJINGTUXIANG,TIQUNAINIUBIKONGZHIJIANDEBIJINGBUFEN(TU2),JIANGTUXIANGFENBIANLVDIAOZHENGZHI200×200 PPI,ZENGQIANGDUIBIDUHOU,ZHUNQUEDUKEYIDADAO90%。

                      图2 奶牛鼻镜纹路[18]
                    图2 奶牛鼻镜纹路[18]

                      Fig.2 Nasal mirror pattern of cows[18]

                      NAINIUYANBUZHUYAODUIHONGMOHESHIWANGMOXUEGUANJINXINGTEZHENGXINGSHIBIE,HONGMOSHUYUYANQIUZHONGCENGJIEGOU,YOUYUHONGMOTEZHENGDIANJIAODUO,KEYIBUSHOUYANGBENJIAODUHECHICUNBIANHUADEYINGXIANG。LuDENG[19]DESHIYANZHONG,60ZHANGFENBIANLVWEI320×240 ppiDEHONGMOTUPIANSHIXIANLE98.33%DESHIBIEZHUNQUELV。SHIWANGMOCUNZAIYUYANQIUNEIBU,SHIBIEGUOCHENGXUYAOSAOMIAOYANDIDEXUEGUANTUXIANG,ZAISHIWANGMODETUXIANGSHANGKEYIKANDAOLIANGZHONGLEIXINGDEXUEGUAN,QIZHONGMAOXIXUEGUANBUJINTEZHENGBUMINGXIAN,HAIRONGYISHOUDAOWAIJIEGANRAO(BIRUSHOUDAOYINGJISHIYANBUCHONGXUE)[20]。ERSHIWANGMOSHANGZHUYAOXUEGUANDETEZHENGBIJIAOMINGXIAN,BUYISHOUDAOWAIJIEGANRAO,KEYIZUOWEISHENFENSHIBIEDETEZHENG。AllenDENG[21]CAIJILE869TOUNIUDESHIWANGMOYANGBENJINXINGGETISHIBIE,QUSHUANGYANSHIWANGMOTUXIANGGONG1 738ZHANG,QISHIBIEZHUNQUELVWEI98.3%(TU3)。

                      图3 肉牛视网膜血管模式图[21]
                    图3 肉牛视网膜血管模式图[21]

                      Fig.3 Retinal vascular patterns of a beef animal[21]

                      QITASHENGWUSHIBIEBUWEIHAIBAOKUONAINIUMIANBU、CEMIANHUAWENYIJIKAOBU。SHANGSHU2ZHONGSHIBIEYANGBENDECAIJIJIAOWEIKUNNAN,ZAIYUDAOBUPEIHEDEDONGWUSHIHUISHANGJISIYANGYUAN。YUBIJINGHEYANBUBUTONG,NAINIUHUAWENKEYIYUANJULITONGGUOSHIPINTUXIANGHUOQUSHUJUYANGBEN。CaiDENG[22]SHOUJILE30TOUNIULIANTUXIANGBINGJIANLILESHIBIEMOXING,JIEGUOXIANSHIJUBUERZHIMOSHIJIASHANGRASLSUANFACHULINIULIANTUXIANG,QIZUIGAOSHIBIEZHUNQUELVKEYIDADAO95.3%。LiDENG[23]ZAIKAIFALIYONGKAOBUTEZHENGSHIBIENAINIUGETISHI,YUNYONGLEXIANXINGPANDUANFENXI(Linear discriminant analysis)、ERCIPANDUANFENXI(Quadratic discriminant analysis)、RENGONGSHENJINGWANGLUO(Artificial neural network)HEZHICHIXIANGLIANGJI(Support vector machines)4ZHONGMOXINGXUEXISUANFA,QIZHUNQUEDUZUIGAODESHIERCIPANDUANFENXI(99.7%),JINGQUEDUZUIGAODESHIZHICHIXIANGLIANGJI(99.6%)。

                      2、 识别管理应用

                      HUANJINGDEBIANHUAHUISHIMOUYISHIBIEXITONGDEXINGNENGFASHENGGAIBIAN,BUTONGDEYINGYONGCHANGJINGXUYAOPEIZHIDUOZHONGSHIBIEZHUANGZHI,ZAIJILUGETISHENGCHANXINGNENGHEJIANCEJIANKANGTIKUANGFANGMIAN,JILUGETIXINXIJIANGYOULIYUZHUIZONGDONGWUDEQUANQISHENGCHANZHUANGTAI,DASHUJUFENXIHUIGENGJIAJINGZHUNDELEJIENAINIUGETIDEFAQING、JIBING、SHENGCHANXINGNENGDENGQINGKUANG,DUISHENGCHANJUECEYIYIZHONGDA。

                      2.1、 记录产奶量

                      CHANNAILIANGSHIPINGGUNAINIUCHANGJINGJIXIAOYIDEZHUYAOCANKAOZHIBIAO,NAILIANGSHUJUDEZHUNQUEXINGZHIJIEYINGXIANGZHEGUANLIZHEDUIMUCHANGXIANZHUANGDEPINGGUHEDUIWEILAIGUIHUADEJUECE。ZAIXIANDAIHUADAXINGMUCHANGZHONG,RFIDJISHUKEYIZIDONGJILUNAINIUGETIDECHANNAIXINXI,ZAIJINAIZHUANPANHUOZHEDANPAIJINAISHEBEIRUKOUCHUFANGZHIRFIDYINGDAQI,PEIHENAINIUDIANZIERBIAOSUOJILUDEBIANHAO,YUJINAISHEBEIDECHENGXUXIANGGUANLIAN,ANXUJILUMEIYITOUNAINIUDECHANNAILIANG,SHIXIANDUIMUCHANGMEIRICHANNAIXINXIDEDONGTAIXINGJILU。DANSHIYOUYUNAITINGDAIJIQUZAINAINIUYONGDUDEQINGKUANGXIAXUYAOJIANGWEN,YIHUANJIENAINIUREYINGJI,DAIJIQUCHANGANZHUANGYOUPENLINHEFENGSHAN,BINGQIEYOUTIEZHILANGANWEIRAO,YINCIRFIDYINGDAQIANZHUANGZAIDAIJIQUCHUKOUCHU(JINAIQURUKOU)SHI,JINGCHANGCHUXIANLOUDUHUOCUODUDEXIANXIANG。ZAIXIAOXINGMUCHANGZHONG,GETICHANNAILIANGXINXIDEJILUJIAOWEICHUANTONG,JILUYUANZAIJINAIQUYIRENGONGGUANCHADEFANGSHISHIBIEGETIHOUPIPEIQICHANNAILIANG,GONGZUOLIANGSUIZHEMIRUNIUTOUSHUDEZENGJIAERSHANGSHENG。StankovskiDENG[24]FAXIANZAIXIAOXINGMUCHANGZHONG,JINAINIUPEIDAICHAOGAOPINRFIDERBIAO(915 MHz)SHIBIEGETI,GAIXITONGDEZHUNQUELVDADAOLE99.8%,YI12 hWEIJINAIJIANGEZHOUQIJISUAN,12 h±5%DENAINIUBI12 h±20%DECHANNAILIANGGAO1.5%,YINCIJIANGDINAINIUDAIJISHIJIAN,TIGAOJINAIXIAOLVKEYIZENGJIACHANNAILIANG。

                      2.2、 监控采食活动

                      JIANCEDONGWUGETIDECAISHIXINGWEISHIFENZHONGYAO,BUJINGUANXIDAOSILIAOXIAOHAOSUODAILAIDESHENGCHANXIAOYIWENTI,HAIYOULIYUFAXIANNAINIUDEJIANKANGJIBING。WEILEZHUNQUECESUANDONGWUDECAISHILIANG,YIYOUYANJIUXUANZEYONGDULIDEKONGJIANJISUANDANGEDONGWUDECAISHILIANG[25],DANGAIFANGFABUSHIYONGYUSHIJISHENGCHANZHONG。YEYOUYANJIUDIPINRFID(134.2 kMz)JIANCENAINIUCAISHIXINGWEI,ZAISIWEITONGDAOCHUANZHUANGDUOGEYINGDAQIJIESHOUBIAOQIANXINHAO[26]。BorchersDENG[27]YINGYONGCowManager SensOorXITONG(HAMOLUN,HELAN)JILUNAINIUDECAISHISHIJIAN,TONGGUOSHEXIANGJIPAISHEDEFANGSHISHIBIEGETI,DANGDANGEDONGWUKAOJINCAISHITONGDAOBINGBANYOUJUJIAODONGZUOSHIBEIRENDINGWEICAISHIKAISHI,ZAIJUJIAOTINGZHISHIJIANWEICHI5 sYISHANGBEISHIWEICAISHITINGZHI。ZAIQITATUXIANGXINXIJISHUDUICAISHILIANGDEFENXIZHONG,ShelleyDENG[28]YINGYONGLIANJIADE3WEISHEXIANGTOUSHIBIEDONGWUGETI,TONGSHICESUANLENAINIUXIAOHAOSILIAODEZHONGLIANGHETIJI。DANSHI,YISHANGYANJIUDOUSHIZAIDONGWUQUNTISHULIANGJIAOXIAODEJICHUSHANGJINXINGDE,ZAIDAGUIMOSHENGCHANZHONGZIDONGSHIBIEGETIHEJIANCECAISHIXINGWEIYOUDAIJINYIBUYANJIU。

                      2.3、 监测卧床行为

                    星云棋牌官网下载   WOCHUANGXINGWEIZAIXIANDAIHUAMUCHANGZHONGJINGCHANGBEILIANGHUAWEIFANYINGNAINIUSHUSHIDUHEJIANKANGZHUANGKUANGDECANKAOZHIBIAO。NAINIUWOCHUANGXINGWEIBUDANKEYIBANGZHUNAINIUHUODECHONGFENXIUXI,HAINENGZENGJIAFANCHUSHIJIAN,TIGAORUFANGJIEJINGCHENGDU,JIANGDIRUFANGYANFABINGLV。GUONEIMUCHANGYIBANCHUYUCHENGBENYINSU,BUHUIANPAIZHUANRENHUOLIYONGXIANGGUANSHEBEIFUZEGUANCHANAINIUWOCHUANGXINGWEI。BorchersDENG[27]YONGSHIPINHUIFANGDEFANGSHIJILUNAINIUWOCHUANGXINGWEI,TONGGUODONGWUHUAWENTEZHENGSHIBIEGETI,QISHIYANSHEDINGDANGDONGWUCHUYUWOCHUANGSHANGSHI,WANCHENGZHANLIDAOPAWODEGUOCHENGQIECEMIANCHAOSHANGSHIBEIRENDINGWEIKAISHIWOCHUANGXINGWEI,GAIFANGFAGENJUPINGJUNWOCHUANGSHIJIANYUGETIWOCHUANGSHIJIANDECHAYIYUCENAINIUDEJIANKANGZHUANGKUANG。NielsenDENG[29]DUIBILE2ZHONGSHANGYEHUANAINIUGUANCHAXITONG,2ZHONGXITONGJUNSHIYONGKECHUANDAICHUANGANQISHIBIENAINIUGETI,BINGTONGGUOWUXIANWANGLUOFASONGXINGWEIXINXI:CowScout(GEAGONGSI,DEGUO)XITONGMEISHIWUFENZHONGJILUYICI,CHUANGANQIGUAZHIZUOQIANTUICHU;IceTag(IceRoboticsGONGSI,YINGGUO)XITONGMEIMIAOCESUANYICIDONGWUXINGWEI,SHEBEIGUAYUNAINIUZUOHOUTUICHU,WEILEBAOZHENGXITONGJILUDEZHUNQUEXING,TONGSHIANZHUANGLELUXIANGJIJINXINGGUANCHA;TONGGUOSHIPINHUIFANGFAXIAN,LIANGZHONGXITONGDUINAINIUWOCHUANGJIANCEDOUJUYOUJIAOGAODEZHUNQUEXING(0.988%~0.999%)。

                      2.4、 追踪活动轨迹

                      DONGWUDEHUODONGBIANHUAWANGWANGYUSHIZHEGETIFULIHEJIANKANGWENTI,LEJIEDONGWUDEXINGWEIHUODONGKEYICUJINDAMUCHANGJINGXIHUAGUANLISHUIPING,WEICHIGETINAINIUJIANKANG,TIGAOSHENGCHANXIAOYI。SHISHIJIANCEDONGWUWEIZHISHISHIBIEDONGWUHUODONGDEJICHU,FANGMUTIAOJIANXIAMUCHANGKEYISHIYONGQUANQIUDINGWEIXITONG(Global positioning systems,GPSs)JINXINGGETIMUBIAODEZHUIZONG。YOUYUDINGWEIJINGDUHENIUSHEJIEGOUDEGANRAO,GPSsBINGBUSHIYONGYUSHINEIDINGWEI,MUQIANSHENEIZHUYAOTONGGUOCHUANDAISHICHUANGANQIHEWUXIANWANGLUOXITONG,HUOZHESHIPINLUXIANGDEFANGSHIJINXINGGETIDINGWEI。PastellDENG[30]SHIYONGUWB(Ultra wide band)DINGWEIJISHU,LIYONGNAINIUXIANGQUANZHONGDEBIAOQIANSHISHIJIANCENAINIUGETIDEWEIZHIXINXI,DANGDONGWUYIDONGCHAOGUO0.05 mSHIXITONGHUIZIDONGJILUBIANHUAXINXI。GAIDINGWEIXITONGZHONGJICHENGLETIAOBIANLVBOQI、ZHONGZHILVBOQIHEKUOZHANKAERMANLVBOQI,YUGUANCEDINGWEIXIANGBI,NAINIUYUNDONGDESHIBIELVDADAO100%。ZAIQUEDINGNAINIUWEIZHIHOU,MUCHANGCESUANYIDONGSHIJIANDUISHENGCHANDEYINGXIANG。ThompsonDENG[31]YANJIULE2ZHONGSUANFA,BAOKUONAINIUQUNTICONGLIKAINIUSHEDAOJINAITINGDESHIJIANJIGETIHUIDAONIUSHEDESHIJIAN,QIYANJIUJIEGUOXIANSHICHUDUIQUNTICESUANDEZHUNQUEXING(R2=0.96)MINGXIANGAOYUGETIHUODONGDEZHUNQUEXING(R2=0.67)。ZAOCHENGZHEIYIWENTIDEYUANYINKENENGSHIGETISHUJUYANGBENBUZU。HAIYOUYANJIUTANTAOLE2ZHONGHUODONGJIANCEXITONGDEXINGNENG,JINAINIUXINGZOUHEZHANLIHUODONG,JIANCEGUOCHENGBAOKUO:、SHIBIEGETI、HUODEHUODONGLEIBIESHUJU、DINGWEI、KAISHISHIJIANHEJIESHUSHIJIAN。SUIRAN2ZHONGXITONGKEYIYOUXIAOSHIBIENAINIUHUODONG,DANSHIBUTONGXITONGDUIJILUBUSHUDEYIZHIXIANGGUANXISHUJIAOCHA(Concordance correlotlon coefficient,ρc=0.593),QIYUANYINKENENGSHIJIBUQIZHIYUDONGWUWEIZHIDEBUTONGSUODAILAIDEJIEGUOCHAYI,BIRUBANGDINGYUQIANZHIHEHOUZHIHUIZAIDUANJULIXINGZOUGUOCHENGZHONGCUNZAIBUTONGBIANHUA,YEKENENGSHIBUTONGJIBUSUANFAYINGXIANGLEJILUJIEGUO[29]。

                      2.5、 其他检测项目

                      ZHUIZONGSHIBIENAINIUGETIZAIQITAFANGMIANDEYINGYONGHAIBAOKUOFAQINGZHUIZONG、JIBINGJIANKONG、TIKUANGPINGFEN、HUOZHEBOZUPINGFENDENG。CHUANDAISHICHUANGANQIHETUXIANGXINXIJISHUKEYIYOUXIAODIJIANCECHUNAINIUDEPAKUAXINGWEI,DANSHIDUIYUZHUIZONGBINGQUEDINGJUTIBIANHAOHAIYOUYIDINGDEJISHUZHANGAI。MUQIAN,MUCHANGHAIYIKAORENGONGTUYADEFANGSHIBIAOJIYISIFAQINGHUOBINGTAIDENAINIU。YOUBAODAONEIZHIERBIAOCHUANGANQIYISHOUJIMEIXIAOSHIDEWENDUBIANHUA,CHAKANNAINIUFENMIANQIANDEZHUANGTAIBIAOXIAN[32,33]。RachelDENG[34]LIYONGCHAOGAOPINRFIDXITONGJIANCELE16TOUNAINIUDEGETISHUAMAOXINGWEIDEHUODONGPINCI,RENWEIMUQIANRFIDJISHUSUIRANKEYISHIBIEKAOJINSHUAMAOQIDEDONGWUBIANHAO,DANSHIDUISHUAMAOXINGWEIBENSHENDEJIANCEZHUNQUEDUJIAODI。TUXIANGSHENGWUSHIBIEBEIYONGYUTIKUANGPINGFENHEBOZUPINGFENZUO,DANSHIXUYAORFIDZUOWEISHIBIEGETIDEGONGJU[35,36,37]。LiDENG[23]LIYONGGAOQING(1 920×1 080 ppi)SHEXIANGJIJILUNAINIUKAOBUTEZHENG,TONGGUOBUTONGHUAWENHELUNKUODETEDIANSHIBIEDONGWUGETI。YINWEIYUNAINIUTIKUANGPINGFENDEGUANCHABUWEIXIANGTONG,SUOYIZAIWEILAIYINGDANGKAOLVTONGGUOTUXIANGJISHUTONGSHISHIXIANGETISHIBIEHETIKUANGPINGFEN2GEGONGNENG。

                      3、 国内奶牛识别系统的研究进展

                      HEDONGJIANDENG[45]RENWEIWEILAIJINGZHUNCHUMUYEYINGGAIFAZHANDONGWUGAOJIXINGWEISHIBIEDELILUNHEFANGFA,XINGCHENGYITAOWANZHENGDE,KEYIZIDONGPANDINGGETIJIANKANGZHUANGKUANGDEXITONGHUAYANGZHIJIANGUANFANGAN。GUONEINAINIUGETISHIBIEJISHUZAIZUIJINJINIANYOULEZHANGZUDEJINBU,ZHOUWENHANDENG[46]TICHULEJIYUZigBeeWUXIANWANGLUOJISHUDENAINIUGETISHIBIEXITONG,ZAINAINIUSHENSHANGANZHUANGKEBIANCHENGDE64WEIYONGJIUDIZHIDEDINGWEIJIEDIAN,GETISHIBIEZAI20 m×20 mDEKONGDIZHONGDINGWEIWUCHAWEI2 m。GUOWEIDENG[47]WEIJIEJUEDUOTOUNAINIUJINRUSHEPINQUYUHOUYINQIDECHONGTUWENTI,BIJIAOLEAlohaSUANFAHEERJINZHISOUSUOSUANFA,ZUIZHONGZAIRFIDXITONGZHONGCAIYONGLEERJINZHISOUSUOSUANFA。LINGWAI,HEJINFENGDENG[48]ZAIKAIFARFIDNAINIUSHIBIEXITONGSHISHEJILEJIYUGAOXINGNENGWEIKONGZHIQIATmega162 HEZHUANYONGDUXIEXINPIANRI-R6C-001A、GONGZUOPINLVWEI 13.56 MHz DEDUXIEQI,CESHIJIEGUOXIANSHIERBIAODUQUJULIWEI0.86 m,LIANXUDUQUCHUCUOLVWEI 0%,XIERUCHUCUOLVWEI 0.02%,MEIMIAOKEFANGCHONGTUDUXIE 35 GEERBIAO。TUXIANGXINXIJISHUZAINAINIUSHENGCHANZHONGDEYINGYONGRIQUCHENGSHU,KEYIYOUXIAOBANGZHUMUCHANGGUANLIZHEKEGUAN、YOUXIAODIPINGJIANAINIUJIANKANGZHUANGKUANGHESHENGCHANXUYAO[49]。ZHAOKAIXUANDENG[50]JIEXILENAINIUTUXIANGXINXI,LIYONGJUANJISHENJINGWANGLUOSHIBIENAINIUGETIDEZHUNQUELVWEI93.33%。

                    星云棋牌官网下载   MUQIANSHENGCHANZHONGRENGRANYICHUANGANQIHUORFIDJISHUZUOWEIZHUYAODESHIBIEGETISHOUDUAN(BIAO1)。GUOWAIYANJIUFANGXIANGJIZHONGZAIDUOGONGNENGJIANCEXITONG,DIANZIXIANGQUAN、KECEWENERBIAODENGDOUYOUDUOYONGTUDETEDIAN。JUBEIKAIFATIDAIRENGONGFANGFADENAINIUGETIDESHIBIEXITONGWUYINGJI、ZIDONGHUA、ZHUNQUELVGAODETEDIAN。DANSHI,YINWEIMUCHANGHUANJINGDEGANRAO,HUOSHIPEIDAIERBIAOZAOCHENGDESHENTISUNSHANG,RFIDJISHUDEYINGYONGJIANGHUISHOUDAOXIANZHI,SUOYITUXIANGXINXIJISHUYINGYONGSHIWEILAISHIBIEGETIDEFAZHANFANGXIANG。WEILAIGETISHIBIEJISHUDEKAIFAYINGKAOLVBUTONGHUANJINGBIANHUADUINAINIUSHIBIEDEYINGXIANG,YIJIBUTONGSHENGCHANJIEDUANNAINIUTIXINGBIANHUA。TONGSHI,WEIJIANLIDUOGONGNENGXITONG,XUYAOKAIFANAINIUSHENTIQUYUDEXIZHIHUASHIBIEHESHIYINGDUOZHONGHUANJINGXIADEMOXINGSUANFA,ZAIJISHUSHANGGENGJIAGUANGFANDISOUJITEZHENGSHUJUBINGZHIDINGJISHUBIAOZHUN。

                      BIAO1 NAINIUSHIBIEJISHUZAISHENGCHANSHIYANZHONGDEYINGYONG

                     

                      识别方法 识别位置 数量 文献
                    项目 Identification Body Quantity Reference
                    Item method position    
                    挤奶 RFID 耳朵   [24]
                    Milking RFID 耳朵   [38]
                      耳号 耳朵 400 [39]
                      传感器 脖子 14 [13]
                    采食行为 传感器 腿部 80 [27]
                    Feeding RFID 耳朵   [28]
                      传感器 腿部 180 [29]
                      涂鸦 背部、侧面 20 [30]
                      耳号 耳朵   [25]
                    卧床 传感器 腿部 80 [27]
                    Lying 传感器 腿部 180 [29]
                      涂鸦 背部、侧面 20 [31]
                      项圈 脖子 14 [13]
                    活动 传感器 腿部 180 [29]
                    Activitiey 耳号 耳朵 400 [39]
                      传感器 脖子   [40]
                      RFID 耳朵 186 [41]
                    体况评分
                    Body condition
                    score
                    跛足评分 RFID、人工机械 耳朵、背部 208~242 [36]
                    Lame score RFID 脖子 75 [42]
                    发情监测 耳号 耳朵 400 [39]
                    Estrus 人工机械 背部 20 [32]
                    monitoring 传感器 腿部 5 [43]
                      耳号 耳朵 400 [39]
                    反刍 传感器 腿部 80 [27]
                    Rumination 传感器 脖子 1 121 [33]
                      RFID 耳朵   [44]
                      RFID 耳朵 16 [34]
                    刷毛
                    Grooming behavior

                      4、 结 论

                      CHUANTONGSHIBIEFANGFADUINAINIUSHANGHAIJIAODA,RENYUANLAODONGQIANGDUDA,BINGBUSHIHEWEILAIGUIMOHUAYANGZHIDEYAOQIU。RFIDJISHUJIAOWEICHENGSHU,SHIMUQIANTIDAIRENGONGYINGYONGJIAODUODEFANGFA,DANSHICUNZAIJIANRONGXINGCHA、SHIYINGXINGRUODEWENTI。SHENGWUSHIBIEJISHUKEYIZAIHENDUOFANGMIANKEFUHUANJINGDEGANRAO,SUIZHEJISHUDEFAZHANDUINAINIUDEJIANCEGONGNENGYEBUDUANZENGJIA。WEILAIXUYAOGAIJINXIANYOUYINGJIANSHEBEI,TIGAOZHUNQUEXING、JIANRONGXING,GENJUSHIYONGHUANJINGHESHENGCHANTEDIANKAIFAZIDONGHUADENAINIUGETISHIBIEXITONG,DUICUJINWOGUOCHUMUYEXINXIHUASHUIPINGJUYOUSHENYUANYIYI。

                      参考文献

                      [1] Van Hertem T,Rooijakkers L,Berckmans D,Pe■a Fernández,A,Norton T,Berckmans D,Vranken E.Appropriate data visualisation is key to precision livestock farming acceptance[J].Computers and Electronics in Agriculture,2017,138(6),1-10
                      [2] Neethirajan S,Tuteja S K,Huang S T,Kelton D.Recent advancement in biosensors technology for animal and livestock health management[J].Biosensors and Bioelectronics,2017,98(11),398-407
                      [3] Awad A I.From classical methods to animal biometrics:A review on cattle identification and tracking[J].Computers and Electronics in Agriculture,2016,123(4):423-435
                      [4] Leslie E,Marta Hernández-Jover,Newman R,Holyoake P.Assessment of acute pain experienced by piglets from ear tagging,ear notching and intraperitoneal injectable transponders[J].Applied Animal Behaviour Science,2010,127(3-4):86-95
                      [5] Barron U G,Butler F,Mcdonnell K,Ward S.The end of the identity crisis?Advances in biometric markers for animal identification.[J].Irish Veterinary Journal,2009,62(3):204-208
                      [6] Fosgate G T,Adesiyun A A,Hird D W.Ear-tag retention and identification methods for extensively managed water buffalo (Bubalus bubalis) in Trinidad[J].Preventive Veterinary Medicine,2006,73(4):287-96
                      [7] Ruiz-Garcia L,Lunadei L.The role of RFID in agriculture:Applications,limitations and challenges[J].Computers & Electronics in Agriculture,2011,79(1):42-50
                      [8] Voulodimos A S,Patrikakis C Z,Sideridis A B,Vasileios A N,Eftychia M X.A complete farm management system based on animal identification using RFID technology[J].Computers & Electronics in Agriculture,2010,70(2):380-388
                      [9] Arcidiacono C,Porto S M C,Mancino M,Giovanni C.A threshold-based algorithm for the development of inertial sensor-based systems to perform real-time cow step counting in free-stall barns[J].Biosystems Engineering,2017,153(1):99-10
                      [10] Stanford K,Stitt J,Kellar J A,McAllister T A.Traceability in cattle and small ruminants in Canada[J].Revue Scientifique Et Technique,20(2),510-522
                      [11] Roberts C M.Radio frequency identification (RFID)[J].Computers and Security,2006,25(1):18-26
                      [12] Rotter P.A framework for assessing RFID system security and privacy risks[J].IEEE Pervasive Computing,2008,7(2):70-77
                      [13] Arcidiacono C,Porto S M C,Mancino M,Giovanni C.Development of a threshold-based classifier for real-time recognition of cow feeding and standing behavioural activities from accelerometer data[J].Computers and Electronics in Agriculture,2017,134(4):124-134
                      [14] Jain A K,Nandakumar K.Biometric authentication:system security and user privacy[J].Computer,2012,45(11):87-92
                      [15] Unar J A,Seng W C,Abbasi A.A review of biometric technology along with trends and prospects[J].Pattern Recognition,2014,47(8):2673-2688
                      [16] Maltoni D,Cappelli R.Advances in fingerprint modeling [J].Image & Vision Computing,2009,27(3):258-268
                      [17] Minagawa H,Fujimura T,Ichiyanagi M,Tanaka K.Identification of beef cattle by analyzing images of their muzzle patterns lifted on paper.[C].In:Proceedings of the Third Asian Conference for Information Technology in Agriculture.Beijing:Asian agricultural information technology and management,2002
                      [18] Noviyanto A,Arymurthy A M.Automatic cattle identification based on muzzle photo using speed-up robust features approach[C].In:Proceedings of the 3rd European Conference of Computer Science,ECCS’12.Paris:WSEAS Press.2012,110-114
                      [19] Lu Y,He X,Wen Y,Wang P S.A new cow identification system based on iris analysis and recognition[J].International Journal of Biometrics,2014,6(1):18-32
                      [20] Jillela R R,Ross A.Segmenting iris images in the visible spectrum with applications in mobile biometrics[J].Pattern Recognition Letters,2014,57(5):4-16
                      [21] Allen A,Golden B,Taylor M,Patterson D,Henriksen D,Skucea R.Evaluation of retinal imaging technology for the biometric identification of bovine animals in Northern Ireland[J].Livestock Science,2008,116(1):42-52
                      [22] Cai C,Li J.Cattle face recognition using local binary pattern descriptor[C].In:2013 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference.Kaohsiung:Institute of Electrical and Electronics Engineers,2013(11):1-4
                      [23] LI W,JI Z,Wang L,Sun C H,Yang X T.Automatic individual identification of Holstein dairy cows using tailhead images[J].Computers and Electronics in Agriculture,2017,142(10):622-631
                      [24] Stankovski S,Ostojic G,SENK I,Marija R,Snezana T,Denis K.Dairy cow monitoring by RFID[J].Scientia Agricola,2012,69(1):75-80
                      [25] 吴洪宇,王晓帆,张永根.奶牛个体采食量测定仪的设计与试验[J].饲料工业,2015,36(19):57-61Wu H Y,Wang X F,Zhang Y G.Design and experiment on the test instrument for feed intake of individual dairy cows[J].Feed Industry,2015,36(19):57-61 (in Chinese)
                      [26] Brownbrandl T M,Eigenberg R A.Development of a livestock feeding behavior monitoring system[J].Transactions of the Asabe,2011,54(5):1913-1920
                      [27] Borchers M R,Chang Y M,Tsai I C,Wadsworth B A,Bewley J M.A validation of technologies monitoring dairy cow feeding,ruminating and lying behaviors[J].Journal of dairy science,2016,99(9),7458-7466
                      [28] Shelley A N,Lau D L,Stone A E,Bewley J M.Short communication:Measuring feed volume and weight by machine vision[J].Journal of Dairy Science,2015,99(1):386-391
                      [29] Nielsen P P,Fontana I,Sloth K H,Guarino M,Blokhuis H.Technical note:Validation and comparison of 2 commercially available activity loggers[J].Journal of Dairy Science,2018,101(6):1-5
                      [30] Pastell M,Frondelius L,J?rvinen M,Backman J.Filtering methods to improve the accuracy of indoor positioning data for dairy cows[J].Biosystems Engineering,2018,169(1):22-31
                      [31] Thompson A J,Weary D M,Keyserlingk M A G V.Technical note:Mining data from on-farm electronic equipment to identify the time dairy cows spend away from the pen[J].Journal of Dairy Science,2017,100(5):1-8
                      [32] Tsai D M,Huang C Y.A motion and image analysis method for automatic detection of estrus and mating behavior in cattle[J].Computers and Electronics in Agriculture,2014,104(6):25-31
                      [33] Stangaferro M L,Wijma R,Caixeta L S,Abri M A,Giordano J O.Use of rumination and activity monitoring for the identification of dairy cows with health disorders:Part I.Metabolic and digestive disorders[J].Journal of Dairy Science,2016,99(9):7395-7410
                      [34] Toaff-Rosenstein R L,Velez M,Tucker C B.Technical note:Use of an automated grooming brush by heifers and potential for radiofrequency identification-based measurements of this behavior[J].Journal of Dairy Science,2017,100(10):1-8
                      [35] Jabbar K A,Hansen M F,Smith M L,Smith L N.Early and non-intrusive lameness detection in dairy cows using 3-dimensional video[J].Biosystems Engineering,2017,153(1):63-69
                      [36] Schlageter-Tello A,Hertem T V,Bokkers E A M,Viazzi S,Bahr C,Lokhorst,K.Performance of human observers and an automatic 3-dimensional computer-vision-based locomotion scoring method to detect lameness and hoof lesions in dairy cows[J].Journal of Dairy Science,2018,101(4):1-14
                      [37] Fischer A,Luginbühl T,Delattre L,Delouard J M,Faverdin P.Rear shape in 3 dimensions summarized by principal component analysis is a good predictor of body condition score in Holstein dairy cows[J].Journal of Dairy Science,2015,98(7):4465-4476
                      [38] 吕伟国.基于EPC物联网和RFID的奶牛精细养殖信息管理系统[D].吉林大学,2013Lv W G.Information management system of precision cow-feeding based on the EPC of the internet of things and RFID[D].Jilin University,2013 (in Chinese)
                      [39] Rutten C J,Kamphuis C,Hogeveen H,Huijps K,Nielen M,Steeneveld W.Sensor data on cow activity,rumination and ear temperature improve prediction of the start of calving in dairy cows[J].Computers and Electronics in Agriculture,2017,132(1):108-118
                      [40] Tullo E,Fontana I,Gottardo D,Sloth K H,Guarino M.Technical note:Validation of a commercial system for the continuous and automated monitoring of dairy cow activity[J].Journal of Dairy Science,2016,99(9):7489-7494
                      [41] Halachmi I,Klop■i■ M,Polak P,Roberts D J,Bewley J M.Automatic assessment of dairy cattle body condition score using thermal imaging[J].Computers and Electronics in Agriculture,2013,99(6):35-40
                      [42] Pluk A,Bahr C,Poursaberi A,Maertens W,Van Nuffel A,Berckmans D.Automatic measurement of touch and release angles of the fetlock joint for lameness detection in dairy cattle using vision techniques[J].Journal of Dairy Science,2012,95(4):1738-1748
                      [43] 田富洋,王冉冉,刘莫尘,王震,李法德,王中华.基于神经网络的奶牛发情行为辨识与预测研究[J].农业机械学报,2013,44(s1):277-281Tian F Y,Wang R R,Liu M C,Li F D,Wang Z H.Oestrus detection and prediction in dairy cows based on neural networks[J].Transactions of the Chinese Society for Agricultural Machinery,2013,44(s1):277-281 (in Chinese)
                      [44] 张爽.奶牛个体反刍行为监测技术研究[D].东北农业大学,2017ZHANG S.Research on ruminant behavior monitoring technique of individual cow[D].Northeast Agricultural University,2017 (in Chinese)
                      [45] 何东健,刘冬,赵凯旋.精准畜牧业中动物信息智能感知与行为检测研究进展[J].农业机械学报,2016,47(5):231-244He D J,Liu D,Zhao K X.Review of perceiving animal information and behavior in precision livestock farming[J].Transactions of the Chinese Society for Agricultural Machinery,2016,47(5):231-244 (in Chinese)
                      [46] 周文罕,汪小旵,丁为民.基于ZigBee的奶牛个体信息识别及定位系统设计[J].江西农业学报,2010,22(1):116-118Zhou W H,Wang X C,Ding W M.Designon information identification and position system of individual cow based on ZigBee[J].Acta Agriculturae Jiangxi,2010,22(1):116-118 (in Chinese)
                      [47] 郭卫.奶牛数字化管理关键技术的研究[D].河北农业大学,2009Guo W.Research on key techniques in digital management of dairy cattle[D].Agricultural University of Hebei,2009.(in Chinese)
                      [48] 何金凤,钱东平,张庆国,李建国,吕长飞,霍晓静.奶牛精细饲喂系统中读写器的设计[J].农机化研究,2010,32(3):118-121He J F,Qian D P,Zhang Q G,Li J G,Lv C F,Huo X J.Design of the reader in cows’ precision feeding system[J].Journal of Agricultural Mechanization Research,2010,32(3):118-121 (in Chinese)
                      [49] 孙雨坤,岳奎忠,李文茜,么恩悦刘鑫李洋张永根.图像信息技术在奶牛生产中的应用[J].动物营养学报,2018,31(5):1626-1632Sun Y K,Yue K Z,Li W X,Yao E Y,Liu X,Li Y,Zhang Y G.The application of image information technology in dairy cow production[J].Chinese journal of Animal Nutrition,2018,31(5):1626-1632 (in Chinese)
                      [50] 赵凯旋,何东健.基于卷积神经网络的奶牛个体身份识别方法[J].农业工程学报,2015,31(5):181-187Zhao K X,He D J.Recognition of individual dairy cattle based on convolutional neural networks[J].Transactions of the Chinese Society of Agricultural Engineering,2015,31(5):181-187 (in Chinese)

                      孙雨坤,王玉洁,霍鹏举,崔梓棋,张永根.奶牛个体识别方法及其应用研究进展[J].中国农业大学学报,2019,24(12):62-70.
                      相近分类:
                      • 成都网络警察报警平台
                      • 公共信息安全网络监察
                      • 经营性网站备案信息
                      • 不良信息举报中心
                      • 中国文明网传播文明
                      • 学术堂_诚信网站

                      百胜棋牌---首页_欢迎您 百灵拼三张-Welcome 蓝洞棋牌官网送3金币---首页_Welcome 035棋牌手游官网 亲朋棋牌官方下载完整版-首页